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Abstract

Computer algebra algorithms are developed for evaluating the coefficients in Airy-
type asymptotic expansions that are obtained from integrals with a large parameter. The
coefficients are defined from recursive schemes obtained from integration by parts. An
application is given for the Weber parabolic cylinder function. © 2002 Elsevier Science
(USA). All rights reserved.
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1. Introduction

When constructing uniform asymptotic expansions of solutions of differential
equations or of functions defined by integrals, usually a difficulty arises when
the coefficients of the expansion are constructed. As shown in [1] for the Airy-
type expansions of Bessel functions, recursion relations for the coefficients can
be obtained for the case that the expansion is obtained by using a linear second
order differential equation.

* Corresponding author.
E-mail addresses: vidunas@wins.uva.nl, vidunas@cwi.nl (R. Vidunas), nicot@cwi.nl
(N.M. Temme).

0022-247X/02/$ - see front matter © 2002 Elsevier Science (USA). All rights reserved.
PIl: $0022-247X(02)00026-4




318 R. Vidunas, N.M. Temme / J. Math. Anal. Appl. 269 (2002) 317-331

In many publications this method has been used (for example, in [2] and [3]),
and for expansions involving Bessel functions or parabolic cylinder functions
similar results are available. Having such a recursion relation for the coefficients
does not always give the possibility to obtain analytic expressions of a number
of coefficients, because the recursion involves integrals of previous coefficients
together with a function that is not easy to handle. Sometimes the coefficients can
be explicitly expressed in terms of coefficients of simpler expansions because
different types of expansions may be valid in overlapping domains. See for
the Bessel functions the relations in [1, p. 425, Exercise 10.3] or [4, p. 368,
formula (9.3.40)].

For special functions usually the same type of uniform expansions can
be obtained by using integral representations of the functions. Sometimes, in
a particular problem, the integral is the only tool available for constructing
uniform expansions. By using transformations of variables in the integrals, these
representations can be transformed into standard forms for which an integration
by parts procedure can be used to obtain expansions in terms of, for example, Airy
functions.

Although it is usually not possible to derive recursion relations for the coeffi-
cients obtained in this way, in all cases for special functions known so far, it is
possible to construct a number of coefficients, and only because of the complex-
ity of the problem, which implies limitations with respect to available computer
memory when doing symbolic computations, there is an upper bound for this
number. An advantage of the differential equation approach is the possibility to
construct realistic and sharp error bounds for the remainders in the expansions;
it is not known how to obtain similar bounds in the approach based on integral
representations.

In this paper we use integral representations and give Maple algorithms for
constructing the coefficients in uniform asymptotic expansions involving Airy
functions. First we describe how to obtain the coefficients for a general case. For
an application we obtain the coefficients for the case of a special function called
parabolic cylinder function. Straightforward computations are often complicated
by appearance of algebraic roots in the output or intermediate expressions. These
algebraic roots can be avoided by replacing some parameters with algebraic
expressions in suitable new variables. In the example of parabolic cylinder
function we avoid computations with algebraic roots by using variable # (instead
of t), and at the end we simplify the output by introducing variable £. In the final
section we give the Maple code used for this example.

2. Airy-type asymptotic expansions

We consider integrals of the form
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where the contour starts at infinity with pht = — /3 and returns to infinity with
pht = /3. We assume that the function f(¢) is analytic in the neighbourhood of
the contour; z and n are complex parameters, z is large.

In the case f(¢) = 1 we obtain the Airy function [5, p. 101]

1
Ef 0 gy = 1P iz ). @

c

For more general functions f the asymptotic expansion of Fy(z) can be given
in terms of this Airy function. The asymptotic feature of this type of integral is
that the phase function ¢ (1) = (1/3)t> — 5t has two saddle points at +,/7 that
coalesce when n — 0, and it is not possible to describe the asymptotic behaviour
of Fy(z) in terms of simple functions when 7 is small. When the parameter n is
positive and bounded away from 0, one can perform a saddle point analysis on
(1) and use a conformal mapping ¢(t) — ¢ (/) = (1 /2)u? with the condition
u(/n) =0. We obtain

e28(J/M)

F@=—r

ioo
/ e(1/2)z“2g(u)du,

—ioo

where g(u) = f(1)dt/du, with dt/du = u/(t* — ), which is regular at the
positive saddle point, but not at the negative saddle point. It follows that, when
n becomes small, a singularity due to dt/du in the u-plane approaches the origin,
and an expansion of dt/du at u = 0 will have coefficients that become infinite as
n — 0. Hence, by using the standard saddle point method we obtain an expansion
that is not uniformly valid as n — 0.

A modification of the saddle point method is possible by taking into account
both saddle points. We give an integration by parts procedure that is a variant of
Bleistein’s method introduced in [6] (for a different class of integrals), and that
gives the requested uniform expansion.

We assume that f is an analytic function in a certain domain G and write

F(t) =ao+ Bot + (1> — g (1), A3)
where
1
oy = E[f(«/ﬁ) + f(=vm))s

Bo = E—%U(ﬁ) — F(=v=0)] @
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Clearly ag — f(0), Bo — f’(0) as n — 0. We have the Cauchy integral repre-
sentation

L[ f(s)

1) = —— ds,
fO=m =
{n}
where the contour encircles the point ¢ in the anti-clockwise direction. Similarly,
1 1 f(s) 1 f(s)
== — ds + — d
0 2|:27ri s—= /1 s+2n'i s+./1 s
wal {(=v
1 sf(s)
=— d
2mi % s2—1n s
{£v/m)
and
1 ) 1 f f @)
= — d , )= —o —_— e
Po 2mi s2—1n s &) 2mi (s =12 —1n)
{(£y/m) {r. £ /m}

Upon substituting (3) in (1), we obtain

Fo2) =27 Ai(nz*)ag — 72 A (1) Bo
2mi
c

An integration by parts gives

Fp(@) =273 Ainz? e — 2723 AV 12*) Bo
— _._!._ ez[(l/3)r3—m]fl @)dt,
2mi
C

where f(t) = g’(¢). Repeating this procedure we obtain the compound expansion

o0
. o
Fa@~ 27 P Al 3 (=D

n=0

o0
23 .. B
—2 AT ) (-1 ®)
n=0
where the coefficients «,, 8, are defined as in (4) with the function f replaced
with f,, which in turn is defined by the scheme

Far1(®) = go(),  falt) =an + Bat + (12 — M)gu(2), (6)

withn=0,1,2,...and fo(t) = f(¢). The expansion in (5) is valid for large val-
ues of z and holds uniformly with respect to 7 in a neighbourhood of the origin.
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A more precise formulation can be given, but more information can be found in
the literature; see [1] and [7].

The functions f,(t) defined in (6) can be represented in the form of Cauchy-
type integrals. We have the following theorem.

Theorem 1. Let the rational functions R, (s, t, n) be defined by

1
RO(SJ, T)) =
s—1
~1 d
Rn+l(svt,77)=‘2——Rn(sat,77), n=011!27~-'a (7)
s —nds

where s,t,n e C, s #1t, 52 #n. Let f,(t) be defined by the recursive scheme (6),
where fo is a given analytic function in a domain G. Then we have

1
)= 5 f Ra(s, 1, 1) fo(s) ds,
D

where D is a simple closed contour in G that encircles the points t and %, /7.

Proof. The proof starts with

1
f’l(t) = TfRO(S’t’ n)fn(s)dss
Tl
D

and in this representation the recursion relation (6) for the functions f; is used.
More details can be found in [8]. O

For the coefficients «,, 8, we have a similar representation:

1 1
=5 f An(sm)fo(s)ds, P Z;f Ba(s, M fo(s)ds,  (8)
D D

where D is a simple closed contour in G that encircles the points +,/7 and
where A, (s, t) and B, (s, t) follow the same recursion (7) as the rational functions
R, (s, t, n), with initial values

Ao(s,n) =

, Bo(s,m) = — L
sé—n
We see that the coefficients «,, B, that play a role in the expansion (5) are well
defined from an analytical point of view. However, from a computational point
of view it may be quite difficult to evaluate the coefficients. For a simple rational
function like fo(¢) = 1/(t + 1) the computations are rather straightforward, and
we can even use residue calculus to evaluate the integrals in (8):

a, =—Ap(—=1,1), Bn=—Bn(—1,n).

s2—n
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The first few values are in this case:

1 1
Olo=-;':—l, ,30=n—_'__—1',
n+1 5 2
1= —, | = ——,
(n—1)3 (n—13
2n+1 n+35
2= ==
2% +21n+7 n+2
=4 T = 40—,
? (-1 P n—17
244n+1 2
— n——.
3 2 2
n° +29n°+65n+13 2n°+ ldn+ 11
=28 , =-11204——— =~
@ =280 T Ps (n— DN

For a more complicated or general function fp(z) even computer algebra
manipulations give complicated expressions which are very difficult to evaluate.
In the next section we develop an algorithm for computing the coefficients «,,, B,
when the values of the derivatives of fo(¢) at t = %, /7 are available.

3. How to compute the coefficients «,,

We explain how the coefficients a,, 8, of (5) can be computed. To avoid the
square roots in the formulas we replace n with b?, and we write (6) in the form

fo(t) = ft),
fari @ =gh(0),  fu®) =an+ But + 2 = bD)gn(t),

forn =0,1,2,.... We assume that the function f is analytic in a domain G,
that the series expansions used in this section are convergent in G, and that the
points b are inside G. Furthermore, we assume the coefficients p,El), p,((z) of the

expansions

[e¢] [,]
fo=Y_plu-bnk  Fn=Y pP@-b) ©)

k=0 k=0

are available.

Theorem 2 (Algorithm). Let coefficients f¢, f be defined by

1 1
f/f=§[P,(cl)+P;(<2)], = [pl(cl)_Pl(c2)]’ k=0,1,2,...,

N




R. Vidunas, N.M. Temme / J. Math. Anal. Appl. 269 (2002) 317-331 323

and coefficients f;** by the recursion
bRC = = f5. k=0,
with ff’f = 0. Next, define coefficients yx, &k by
w=1rs. So=fy"
and fork > 1:
k

(=D jRk=j =1,
G D ey o

j=1
k k—j : .
e DRk - - D!
Be=D @by%x=Tk1 (k = j)!

iyt (10)

j=1
Finally, let for n > 0 coefficients y("), 5™ pe defined by the recursion
k y

v = @k + DS, + 262k + D8,

5" =2k + Dy, k=0,1,2,..., (11)

with yk(o) = Yk 6,‘?’

by

= 6k. Then the coefficients ay,, B, of expansion (5) are given

an = )’0(”), /371 = 86’1)’ n 2 0

Proof. The coefficients f, f occur in the expansions

=) fa=b  f)=) fou-b),

k=0 k=0
where f.(1), f,(t) are the even and odd parts of f:
1 1
fe(t) = E[f(t) + f(=nl, Jo= E[f(t) = f(=0],

and the coefficients f,** occur in the expansion

1 o0
—fon) = :;fk"’”(t —b)*.

=0

The coefficients yx, 8x occur in the expansion

(o] x
FO=Y n@ =2 +1Y s> - (12)
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Observe that
o0 o0
f0)=Y_n@ -k o) =t) &0 -bD,
k=0 k=0

and we will verify the first relation of (10). We write
1 dz
_ 2
"= 3— ffe(\/z+b )z"+‘ ,

where the contour is a small circle around the origin. Also,

1 jgf(’) 2t dr
=i P oy = by

where the contour is a small circle around ¢ = b.
Substitute here the expansion f.(t) = _C;°=O f je(t — b)/. Then,

k
1 2tdt
= ¢ -,
Yk jzofj 2 % (t —{—b)k“H(t _b)k+l—1
Expand

an b),m Z Gn (t = D)™,

We find, by using [5, p. 108]

o8}

(12 = Z(a)m m Z( >( —om,
n=0 ’ n=0
_ lm(k—m)(k«}—m—l)!
m=1 (2byk+mm1 k!

(13)

(14)

When we use (14) in (13), we only need g, with m = k — j. This gives the first

result of (10). The proof for &y is the same, because (1/t) f,(¢) is again even.

The coefficients ", 8" are used in

o0
fal)) = Z v =0 1Y 5P — bR,

k=0

and the recursions in (11) are easily verified, as is the final relation

tn=w"" Ba=w", n20. O

The first few values are of the coefficients yx, §x of the expansion in (12) are
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1
y0=f0ev 80:;00’
1 1
}’1=5fo, 51=555(bf10—f6’),
1

1
v = @(bef —f8), &= 8—b-5-(2b2f2" ~3bf2 +3£9),

and we observe, as in (10), negative powers of . From a computational point of
view, this may cause numerical instabilities, because the coefficients are analytic
functions of b at b = 0. For example, taking f(¢) = 1 /(¢ + 1) again, we obtain

1 1

Vk=(l_b2)k+l' 6k=—(1_b2)k+1’ k=0,1,2,...,
which follows from

11—t 1 —1t

f+1 1-12 (1-b3)—(2—b?)

o]

3 Z (t2 _ bZ)k B o0 (t2 _ bZ)k
- b2)k+l — (1- b2)k+1

k=0

From the representations in, for example, (10), we conclude that if we apply
the algorithm for computing the coefficients o, 8, of expansion (5), starting with
numerical values of the coefficients p,((l), p’((z) of (9), we may encounter numerical
instabilities when b is small. For this reason, it is important to use exact values
of p,(‘”, p,Ez), and computer algebra is of great help here. In the next section we
consider a non-trivial case in which obtaining the exact values of the coefficients

p,((l), p,(f) of (9) also needs special care.

Remark 1. In order to compute the coefficients «,, 8, forn =0, 1, ..., N from
the relation
—.,m —sm S
=y, , Pn=6 , n=0,

and the recursion in (11), we need the starting values for this recursion y, 8¢
for k =0,1,...,2N. Hence, as follows from (10), we also need p,(cl), p,((z),
k=0,1,...,2N, in the expansions in (9).

4. Application to parabolic cylinder functions

Weber parabolic cylinder functions are solutions of the differential equation
d?y I,
Airy-type expansions for the solutions of this equation can be found in [2], and
are obtained by using the differential equation. In this section we show how to
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obtain an integral representation like (1), and how to apply the algorithm of the
previous section for deriving an Airy-type asymptotic expansion.
A standard solution of (15) is the integral

e(1/4)x?
iv2m

c
where the contour C is a vertical line in the complex plane with is > 0; see

[4, p. 688, formula (19.5.4)].
We consider large negative values of a, and use Olver’s notation

Ua,x)= e—xs+(l/2)szs—u—l/2ds, (16)

1
a=-—-2—p,2, x=ILt’\/§.

Changing the variable of integration by writing s — s/ V2, we obtain

24172

1 (/2% M (1/2)u*+1/2

Ul —-= 2, tJ'z'):__(_) fez¢(s)s~l/2ds,
( 2“ # i2r \V2

where
= —5“ =2 S, = —n”-.
N N st + In =z

The saddle points are obtained from the equation ¢’(s) = 0, that is, from
52 —2st + 1 = 0, which gives two solutions

Sj:=t:|’:\/t2—]..

These points coalesce when t — £1. Observe that in the new variables the dif-
ferential equation (15) transforms into
d*y
dr?
which has turning points at t = £1.
A transformation into the standard form (1) can be obtained by writing

-t -1y =0,

¢<s>=§w3—nw+A, (17)

where 1 and A have to be determined and do not depend on w. A transformation
into the cubic polynomial is first considered in [9]. For further details on the theory
of this method we refer to [1,7,8].

The parameters n and A are obtained by assuming that the saddle points sy
in the s-variable should correspond with the saddle points wt = #%,/7 in the
w-variable. We write

t =coshf, whichgives s4= et (18)
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assuming for the time being that 8 > 0. We obtain the equations

1 2
Ee“" —2¢tPcoshf +6 = —-3—773/2 + A,
1 2
Ee‘ze —2¢ % coshf — 6 = +§n3/2 + A,

from which we derive
4 1 1
3173/2 =sinh26 — 26, =-5- cosh?6 = -5 12. (19)

By using these values of 7 and A the w-solution of the equation in (17) is uniquely
defined. Namely we use that branch (of the three solutions) that is real for all
positive values of s, and s > O corresponds with w € R.

After these preparations we obtain the standard form (cf. (1))

1 2 A 12p2t [ M (/2412
U<—-2—p, ,p.t«/i)e’z = 2mel/PH (75) Fy(z),  (20)
where
1 3 1 ds
F, _-— z[(1/3)w’—nw] dw, -
n(2) = 5— fe fw)dw, f(w Fidw'
c
Taking into account the mapping in (17), we have
ds w? — b? w? — b2
822 =50, =% (21
dw  sZ—2ts+1 F@w) ﬁs2—21s+l 7 @

As explained in the previous section, for the computation of the coefficients

op, Bn, we need the coefficients p,((l ) , p,((z) of the expansions (cf. (9))

o0 oo
fy=>"pw-b¥  f-wy=) pPw-b*. (22)

k=0 k=0

It turns out that p(l) = p(()z). Indeed, consider the expansions

oo
s—s++§: (w — b)k, s=s_+Zs,:(w+b)k. (23)
k=1
Using the expression of ds/dw in (21) and I’H6pital’s rule we obtain
2b «/5 b
sf =sp————, sothat si = s+l 7= 3+
2sy —1)s, i/ sinh @

The square root has the plus sign because ds /d w is positive if w € R, as follows
from the first relation in (21) and the properties of the mapping. From the
expression (22) for f(w) we obtain
+
b
=f(b)= —= .
Foy= S5+ sinh 6
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Analogously,

. @ b (1)
= d = f(=b) = | —— = p{., 24
S =V smne 4 Po =SEDI=y e =R 24

In order to avoid expressions with algebraic roots in the computations, it is
convenient to consider expansions like (22) for the function f(w) = f(w)/f(b).
We denote the corresponding coefficients by ﬁ,ﬁl) and ﬁ,(cz). Besides, to avoid

algebraic roots in the expansions of (23), we replace ¢ by a new variable

F—1\ Y4 4p2 4
u=«/2b<———) , so that t=J—

t+1 4b% —ut’
Then
2b +u? + 2b+u?
= —ar TE T

Other coefficients s,'c" can be obtained by deriving a recurrence relation for them
from the differential equation in (21). These are rational functions in  and b. The
coefficients s, can be obtained from the corresponding s,?' by changing the sign
of both u and b. In particular,

2b —u? _ 2b—u?
T ——— s =
2b +u? ! 2u
Further, the coefficients ﬁ,((” and 13,((2) can be computed using
1 ds d./s
=25 35
Vs dw dw

Recall that /s satisfies the differential equation 2s dS/dw = Sds/dw. It is con-
venient to compute the power series (in w—b) solution S of this equation with
Sy (b) =4u/(2b — u?). Then f(w)=dS,/dw and the coefficients ﬁ,((l) are ob-
tained easily. The coefficients [7,((2) can be obtained by changing the sign of both
b and u in the expression for (—1)¥ ﬁ,(cl).

Application of the algorithm of the previous section gives the coefficients «;,
B; for the expansion of f(w), and these coefficients are rational functions in b
and u. We write them in a more compact form as rational functions in n = b and

_ut+ar b
a7

§

The first few coefficients in the expansion (5) are

ag=1, Bo =0,

b ] P 58 —6nE—5
1= ’ 1= 487]2 ’
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3855 —924ng* + 6847°¢% — 143n° + 708> — 84nk — 455

* 460873
Bi [+ %) 2021
/32=Z§, a3=2‘8‘—m01,
_ 425425¢° — 1531530n£® +20400127%¢° — 28875¢6
bs = 33177607
—1189005n3&3 4 69300n£* +259110n*E — 5130072€2
+ 331776013
28875£3 + 10725103 — 346500 — 425425
+ 331776015 ’
Bz 2021
Pe=18 " 323607

The linear relations between the coefficients follow from expansion (8.11) in [2],
see also [10]. Where both power series factors of Ai and Ai’ contain only even
powers of our z (in Olver’s notation, z = (1/2)12), but the whole expansion is
multiplied by a function g(z) with known asymptotics. Olver also notes that the
coefficients in the Airy-type asymptotic expansion of U(a, x) can be linearly
determined from the asymptotic expansion (of the same function) in terms of
elementary functions; see formulas (8.12), (8.13) in [2].

The coefficients ¢, B, are analytic functions at n = 0 and we can expand them
in Maclaurin series. The first few coefficients are expanded as follows:

P I 1359 , 71 . 1527123
1=7360 " 1800 1078000 ' 16250" _ 1018710000
3997
75968750 ’
o 199 6849 737, 4671
2= 7115200 © 4928000 _ 1040000" © 142560000
975823
6806800000 '

The radius of convergence equals (3m/2)%/3 =2.81.... This number follows
from the singularity of the mapping given in (19), with @ defined in (18). The
mapping is singular at t = —1.

5. Maple code

As the input for the following code one has to (re)define functions AiryPw(k)
and AiryPm(k) specifying the coefficients in (9). For example, if f(t) =1/ + 1),
then one has to define
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AiryPw := proc(k) (—1)k/(1+AiryB) (k+1) end:
AiryPm := proc(k) 1/(1—AiryB)*(k+1) end:

The output is given by functions AiryAlpha(n) and AiryBeta(n), which return the
coefficients in (5). For convenience, one may rename the global variable AiryB
using alias:

AiryAlpha := proc(n) normal(AiryGamma(n,0)) end:
AiryBeta := proc(n) normal(AiryDelta(n,0)) end:
AiryGamma := proc(n,k)
if n=0 then AiryC(k)
else factor((2*k+1)*AiryDelta(n—1,k+1)+2*AiryB"2* (k+1)* AiryDelta(n—1,k-+2))
fi
end:
AiryDelta := proc(n,k)
if n=0 then AiryD(k)
else 2*(k+1)* AiryGamma(n—1,k+2)
fi
end:
AiryC := proc(k) local j;
if k=0 then AiryFe(0)
else factor(
sum(*(—1)"(k—j)*j/(2*k—j)*binomial(2* k—j,k)/ (2* AiryB)"(2*k—j)* AiryFe(j), §=1.k))
fi
end:
AiryD := proc(k) local j;
if k=0 then AiryFoe(0)
else factor(
sum(‘(—1)"(k—j)*j/(2*k—j)*binomial(2* k—jk)/(2* AiryB)"(2*k—j) * AiryFoe(j)’, §'=1..k))
fi

end:

AiryFoe := proc(k)
if k<0 then 0
else expand((AiryFo(k)—AiryFoe(k—1))/AiryB);
fi

end:

AiryFe := proc(k) (AiryPw(k)+AiryPm(k))/2 end:

AiryFo := proc(k) (AiryPw(k)—AiryPm(k))/2 end:
The remaining code computes the coefficients of the expansion of parabolic cylin-
der function U (a, x) (we use the normalized function f(w)/f (b), as mentioned
after (24)). To use the code one has to assign

AiryPw := ParCyPw; AiryPm := ParCyPm;

The global variables are AiryB, ParCyU, ParCyXi, they correspond to variables b,
u, & in the text. The coefficients in b and u would be returned by AiryAlpha(n) and
AiryBeta(n), and coefficients in b and £ by ParCyAlpha(n) and ParCyBeta(n):

alias(ParCyUa=RootOf(z"4—4*ParCyXi*z"2+4*AiryB"2,z)):

# Algebraic relation between ParCyU and ParCyXi

ParCyAlpha := proc(k) factor(evala(subs(ParCyU=ParCyUa,AiryAlpha(k)))) end:

ParCyBeta := proc(k) factor(evala(subs(ParCyU=ParCyUa,AiryBeta(k)))) end:
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ParCySw := proc(k) option remember; iocal T, s, a, w;
if k=0 then (2* AiryB-+ParCyU"2)/(2* AiryB—ParCyU"2)
elif k=1 then (2* AiryB+ParCyU2)/2/ParCyU
else s := sum(‘afi*w¥’, =0..k);
T := coeff(expand((s"2+2* (ParCyU"4-+4* AiryB"2) /(ParCyU"4—4* AiryB"2)*s+1)
*diff(s,w)—w* (w+2* AiryB)*s), w, K);
sort(factor(solve(subs(seq(ali]l=ParCySw(i), i=0..k—1), T), a[k])), ParCyU)
fi
end:
ParCySm := proc(k) subs(ParCyU= —ParCyU, AiryB= —AiryB, ParCySw(k)) end:
ParCySqrtS := proc(k) option remember; local j;
if k=0 then 4*ParCyU/(2* AiryB—ParCyU"2)
else factor(sum(‘(3/2*j—k)* ParCySw(j)*ParCySqrtS(k—j)’, =1..k)/ParCySw(0)/k)
fi end:
ParCyPw := proc(k) (k+1)*ParCySqrtS(k+1) end:
ParCyPm := proc(k) (— 1) k*subs(AiryB= —AiryB, ParCyU= —ParCyU, ParCyPw(k)) end:
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